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Phase equilibria of asymmetric hard sphere mixtures

N. G. Almarza and E. Enciso
Departamento de Quı´mica Fı́sica I, Facultad de Ciencias Quı´micas, Universidad Complutense, E-28040 Madrid, Spain

~Received 4 September 1998; revised manuscript received 3 December 1998!

The phase diagram of mixtures of hard spheres with additive diameters is studied. The case of very different
sizes is treated by means of mapping the two component system on a one component problem. In this
monocomponent system large particles are explicitly considered, whereas the effects of the small component
are included through an additional effective interaction potential between large particles. The effective poten-
tial is used to analyze the phase diagram of the mixture by means of computer simulation techniques. Results
for the behavior at low density of small spheres seem to indicate that no fluid-fluid equlibria occur. On the
other hand, the results show how this kind of mixture can exhibit equilibria between isostructural crystalline
phases.@S1063-651X~99!08204-5#

PACS number~s!: 05.20.2y, 64.75.1g, 82.70.Dd
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I. INTRODUCTION

The phase equilibria of asymmetric hard sphere mixtu
~AHSM! has become a problem which has received a lo
attention in recent years@1#. The existence of fluid-fluid
equilibria in AHSM has been predicted from theoretical a
proaches; however, the results of different approximate th
ries are very discrepant@1#. Standard computer simulatio
methods are not very effective when applied to these s
tems: the interesting results are supposed to appear at
packing fractions of both components when the particle s
are quite different, this leads us to consider systems wit
high number of particles of small species in order to hav
sensible number of large particles, furthermore, the syst
suffer from a serious additional problem: the diffusion
large particles is quite hindered by the presence of m
small particles which makes equilibration an impossible ta
One of the most popular methods to simulate fluid-fluid eq
libria, the so called Gibbs ensemble Monte Carlo method@2#,
is not useful in this context. In this case the problem is due
the difficulties in designing effective methods to insert lar
particles in the system.

It is known that in a system composed of a solute of la
particles and a solvent of small particles the difference
size can induce some attraction between large particles@3,4#,
due to excluded volume effects which produce the so ca
depletion forces. These effects are supposed to be s
ranged in the large particle size scale. Some effort has b
devoted to parametrizing the form of these induced inter
tions between solute particles@5–10#. The influence of such
effects on the phase equilibria of the system is the main p
in this work. On the other hand, in recent years some at
tion has been devoted to evaluating the effect of the poten
range in the phase diagram of simple fluids. One of the m
interesting findings is that, for systems interacting throug
hard core potential plus a very short ranged attractive in
action, the liquid does not appear as stable phase@11,12#. In
addition, for very short range potentials, equilibria betwe
two crystalline phases with the same symmetry have b
found @13#. Such equilibria end for high temperatures a
critical point. One question that arises after watching th
facts is whether the phase diagram of very asymmetric h
sphere mixtures could show this kind of phenomenolo
PRE 591063-651X/99/59~4!/4426~8!/$15.00
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Preliminary results@14# seem to indicate such a behavior.
this work we explore a combination of different methods
statistical mechanics to determine the phase diagram of t
systems. The procedure lies in the possibility of mapping
two component system in a one component system with
effective pair potential which depends on the activity of t
solvent. This mapping procedure is based on the theore
framework of the statistical mechanics of simple fluids
external fields. The use of an effective potential of a mon
component system allows us to use a number of simula
techniques to explore the phase diagram without needin
use a very large number of particles or very long runs.

The paper is sketched as follows. In Sec. II we show
accurate route to map the two component system in a
component problem. Section III is devoted to the procedu
used to determine the phase diagram. In Sec. IV we men
the main simulation details. In Sec. V the main results
shown, including the phase diagram and some tests to ch
the ability of the effective potential formalism to reprodu
the results of the binary system. Finally, in Sec. VI the ma
conclusions are collected.

II. STATISTICAL MECHANICS

We will deal with binary mixtures of hard spheres. Th
hard sphere~HS! diameters will bess ands l (s l.ss). The
size ratio is defined asR5ss /s l . Componentss and l will
be referred to as the solvent and solute, respectively. The
of this work is to solve the statistical problem of the mixtur
by considering a fluid of solute particles interacting throu
some effective potential which will depend on the chemi
potential~or other related property! of the solvent.

The partition functionQ in an ensemble defined byb
51/(kBT), bp, zs , andNl , wherekB is the Boltzmann con-
stant,T is the absolute temperature,p is the pressure, and
zs}ebms is the activity of the solvent~with ms being the
chemical potential of the solvent! reads

Q5
1

L l
3NlNl !

E dV VNle2bpVEdqle
2bULL~ql ,V!e2bV~zs ,V,ql !,

~2.1!
4426 ©1999 The American Physical Society
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whereL l is thede Brogliewavelength of large particles,ULL
represents the hard sphere interaction between so
spheres,ql are the position coordinates of solute partic
reduced with the system size@15#, andV is the grand poten-
tial of the small particles for a given large particle config
ration.V can be expanded in a series of the solvent activ
considering large spheres as an external field@16#.

A. First-order expansion

The expansion ofV up to first order produces

2bV~1!5zsI 1~V,ql !, ~2.2!

where I 1 is the volume available for small spheres.I 1 is a
function of the position coordinates of the large particl
Positions lying at a distance less thanssl5(ss1s l)/2 of a
solute particle are not accessible to solvent particles.I 1 can
be written as

I 15V2(
i

wi1(
i , j

wi j 2 (
i , j ,k

wi jk1•••, ~2.3!

wherewi represents the amount of volume excluded to
solvent by thei th particle, andwi j is the overlap between th
te

y

.

e

volumes excluded to the solvent by particlesi and j , etc. The
hard sphere interaction between solute particles makes
truncation of the series possible. The number of terms
consider depends on the size ratio. From simple geome
considerations@17# it follows that for values ofR<2/A3
21[R2.0.1547, the hard sphere interaction between la
spheres avoid the existence of an intersection of the volu
excluded by three large spheres. Therefore, forR<R2,

I 15V2Nlv la
31(

i , j
S~ssl ,r i j !, ~2.4!

where v l5ps l
3/6 is the solute particle volume,a[11R

5(2ssl)/s l , andS(s,r ) is the overlapping volume betwee
two spheres of radiuss at distancer . Using the definition of
a, such a volume can be written as

S~ssl ,r !5
ps l

3

12 S a2
r

s l
D 2S 2a1

r

s l
D ~2.5!

for r /s l<a, and 0 otherwise. The partition function of th
system in the limit of low activities of the small compone
is
t

Q~1!5
1

L l
3NlNl !

E dV VNle2bpV1zsV2zsNlv la
3E dql expF(

i j
„2buHS~r i j !1zsS~ssl ,r i j !…G , ~2.6!

whereuHS represents the hard sphere pair potential between solute particles, and the termszsS play the role of additional
effective pair interactions between large spheres due to the presence of small particles. Thezs expansion ofV up to first order
does not take into account interactions between small spheres~due to the small reduced density!. Considering a pure system
of small spheres at the same level of approximation~first order in activity!, which is at chemical equilibrium with the solven
in the mixture, it is possible to relate the activity with the densityr0 and pressurep0 of such a reference system:

bp0
~1!5r0

~1!5zs . ~2.7!

An ad hocosmotic pressureP (1) can be defined as

bP~1!5bp2zs . ~2.8!

Introducing this definition in Eq.~2.6!, we obtain

Q~1!5
exp@2zsNlv la

3#

L l
3NlNl !

E dV VNle2bP~1!VE dql expF(
i j

„2buHS(r i j )1zsS(ssl ,r i j )…G . ~2.9!

B. Second order

The second-order expansion of the grand potential,bV (2), in terms of the activity reads

2bV~2!52bV~1!1zs
2I 2 ~2.10!

whereI 2 @16# is

I 2~V,ql !5 1
2 E dr1 exp@2bULS~r 1uV,ql !#E dr2 exp@2bULS~r 2uV,ql !# f ~r 12!, ~2.11!
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where the integration is performed over two solvent p
ticles. f is the Mayer function of the interaction betwee
solvent particles, andULS takes into account the hard sphe
interaction between large particles with a small one. T
contribution can also raise an additional pair-additive eff
tive interaction between large spheres for small values oR
(R<R2

(2)'0.095) @17#. This is not the case forR50.10, one
of values used in this work. A number of routes can be ta
at this point in order to avoid the cumbersome task of int
ducing many-body contributions, One can neglect the ma
body contributions, which are only relevant when three p
ticles become very close, and evaluate the second-o
contribution to the effective potential between pairs of p
ticles @16#, or consider the results in the limit ofR→0 @5#.
Then one can find some difficulties in the results, either
cause one has to parametrize numerical results for some
ter integrals in the evaluation of the pair contributions toI 2
or due to the complexity of some analytical results@5# which
make them not very amenable to carrying out simulatio
We have chosen to follow a different point of view, whic
makes simulation easier while keeping the relevant featu
of the system.I 2 can be regarded as the configuration in
gral of a diatomic molecule with a bond distance that is f
to change between 0 andss in a medium of large spheres
This configuration integral can be written as the product
an ideal internal part by a translational part which incorp
rates the interaction with the external field. This second c
tribution can be approximated by considering anequivalent
sphere with an effective diametersd . In this work the value
of sd has been chosen to obtain the correct value ofI 2 in the
limit of high dilution of large spheres. With this criteria, th
second-order contribution to the partition function can a
be written in terms of pair interactions for the valueR
50.10,

I 2.2BFV2Nlv lad
31(

i , j
S~s ld ,r i j !G , ~2.12!

whereB52pss
3/3 is the second virial coefficient of a pur

solvent system,s ld5(s l1sd)/2, ad52s ld /s l ands ld can
be calculated as

s ld
3 5s ls

3 F11
9R

8~11R!
2

R3

4~11R!3G . ~2.13!

Following the same procedure as in first order, the exp
sion of the pressure of the reference system up to sec
order reads

bp0
~2!5z2Bz2. ~2.14!

Therefore, introducing thead hoc osmotic pressure
bP (2)5bp2bp0

(2) , we obtain the second order approach
the partition function:

Q~2!5
exp@2Nlv l~zsa

32zs
2Bad

3!#

L1
3NlNl !

E dV VNle2bP~2!V

3E dq2e2bUeffec
~2!

~2.15!
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where

bUeffec
~2! 5(

i , j
@bui j

HS2zsS~ssl ,r i j !1zs
2BS~s ld ,r i j !#.

~2.16!

The corresponding expressions for the expansion up to
order are recovered by settingB50.

A new transformation is convenient in order to achie
better convergence behavior. That transformation consist
developing the effective potential using the density of t
reference systemr0 instead of its activity. This is done by
writing the activity as a series of the homogenous syst
density, substituting in Eq.~2.15!, and retaining terms up to
second order inr0. The result is

z5r12Br21•••, ~2.17!

Qr0

~2!5
exp@2Nlv la

3~r01Br0
2!1Nlv lr0

2B~ad
32a3!#

L1
3NlNl !

3E dV VNle2bP~2!VE dq2e2bUeffec
~2!

, ~2.18!

where

bP~2!5bp2~r01Br0
2!, ~2.19!

bUeffec
~2! 5(

i , j
bue f f ec

~2! ~r i j !

5(
i , j

@buHS~r i j !2r0n1~r i j !2Br0
2n2~r i j !#,

~2.20!

where

n1~r !5S~ssl ,r !, ~2.21!

n2~r !52S~ssl ,r !2S~s ld ,r !. ~2.22!

Again, the expression for the first-order approach in terms
r0 is recovered by takingB50.

In Fig. 1 we compare the first-@n1(r )# and second-orde
@n2(r )#, contributions to the effective pair potential betwe
large spheres used in this work with those reported in R
@5#, and the exact ones evaluated by diagrammatic exp
sions up to second order of the pair distribution function@16#
of two large particles in a medium of small particles.

In Fig. 2 we show the realizations of the effective cont
butions into the total pair interaction,bueffec

(n) , for R50.10
andr0ss

350.30. In addition we plot the effective interactio
using the third-order exact potential for this case, evalua
numerically by means of a diagrammatic expansion, and
result for the potential developed in Ref.@10#, which also
contains terms depending onr0

3. This last effective interac-
tion was used in Ref.@18# in their study of the phase diagram
of AHSM using a similar approach to that employed in th
work.
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III. PHASE EQUILIBRIA

It is now well established that the range of pair interact
plays a major role in the existence of~stable! liquid-vapor
phase equilibria. Thus it seems unlikely to find phase eq
libria involving two phases with disorder with respect
large particles in the type of mixtures we are dealing wi
Recent work has shown that short range interactions can
duce the coexistence of ordered phases with the same
metry @13#. In order to analyze these effects in our system
we have studied by computer simulation the phase diag
in situations of low activity of the small component. The
modynamic integration~TI! and the so-called Clausius-
Clapeyron ~or Gibbs-Duhem! integration schemes@19,20#
have been used to evaluate the phase diagrams at the
levels of approach described in Sec. II.

In order to perform Clausius-Clapeyron integration, o
starts from certain conditions where phase equilibrium ex
and is well characterized, and proceeds to change the
evant thermodynamic variables in such a way that therm
mechanical, and chemical equilibria between the phases
kept along the trajectory. Those ideas apply in our case
follows. In an ensemble defined by the variablesbP, Nl ,
and r0, we consider two phases in equilibrium~we neglect
the trivial contribution of the temperature for hard core m
tures!. We have to establish a starting point on the (bP, r0)
plane in such a way that we have equal chemical potentia
the solute in both phases. The rest of equilibrium conditio
are readily fulfilled in our working ensemble. For such

FIG. 1. Contributions to the effective potential between lar
particles forR50.10. The distances are given in terms ofh, h
5(r 2s l)/ss . The effective contributions are multiplied by th
size ratioR. Such scaling produces similar curves for different v
ues ofR. Upper curves represent the terms2RBn2(r )/ss

6 . Below,
the terms2Rn1(r )/ss

3 are plotted. Continuous lines show the e
fective contributions used in this work. Crosses represent the e
results for the two body interaction. The results from Ref.@5# are
given by dashed lines.
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state and subsequent ones one can perform (Nl , bP, r0)
simulations for both phases, and use the results to m
along a (r0 ,bP) trajectory that guarantees that chemic
potential of large particles is kept equal in both phases.

Starting from the differential form of the Gibbs free e
ergyG, we sketch the thermodynamics equations involved
the transformations introduced in Sec. II. Such transform
tions allow us to express, at the end, the problem in term
the osmotic pressure and the density of a pure solvent
tem:

d~bG!5Vdbp1bm ldNl1bmsdNs , ~3.1!

wherem l is the chemical potential of the solute. By a Le
endre transformation, and recalling the equalityG
5( iNim i , we introduce the chemical potential of the solve
as a relevant variable:

d~bm lNl !5d~bG2bmsNs!

5Vd~bp!1bm ldNl2Nsd~bms!. ~3.2!

A pair of transformations allows us to use the referen
solvent densityr0 and the osmotic pressurebP as relevant
variables instead ofbms andbp:

d~bm lNl !5Vd~bp!1bm ldNl2
Ns

zs
dzs , ~3.3!

ct

FIG. 2. Scaled effective potentialsbRueffec(r ) between large
particles forr0ss

350.30 and size ratioR50.10. In the figure for
such conditions we plotRbueffec

(2) [2R@r0n1(r )1Br0
2n2(r )# ~con-

tinuous line!, and RbUeffec
(1) [2Rr0n1(r ) ~pointed line!, and the

crosses represent the exact evaluation~up to third order! of the two
body effective interaction which, at the current density, is expec
to represent the total interaction quite well. The dashed line co
spond to an effective potential~proposed in Ref.@10#!, which was
used in Ref.@18# in their study of the phase diagram of AHSM.
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d~bm lNl !5Vd~bp!1bm ldNl2
Ns

zs

]zs

]r0
dr0 ,

~3.4!

d~bm lNl !5Vd~bP!1bm ldNl

1FVS ]@bp0#

]r0
D2

Ns

zs
S ]zs

]r0
D Gdr0 . ~3.5!

The term between brackets can be evaluated using
partition functions developed above to produce~in the
second-order approach!:

S ]@bNlm l #

]r0
D

Nl ,bP

.VS ]@bp0#

]r0
D2

Ns

zs
S ]zs

]r0
D

.2S ] ln Q~2!

]r0
D

Nl ,bP

, ~3.6!
di-

re
r t
in

bl
w
to
gr
te

on
a
os
g
-
te
In
a-
h

pa
he

S ]@bNlm l #

]r0
D

Nl ,bP

5Nlv l@a312r0B~2a32ad
3!#

1U112r0U2 , ~3.7!

where

U152(
i , j

Nl

n1~r i j !, ~3.8!

U252B(
i , j

Nl

n2~r i j !. ~3.9!

In the following we will use superindicesI and II to dis-
tinguish between thermodynamical properties of two diff
ent phases. In a differential change ofr0 and bP we will
obtain:
dbNl~m l
I2m l

I I !5~VI2VII !d~bP!1F S ]@bNlm l
I #

]r0
D

b,Nl ,bP

2S ]@bNlm l
I I #

]r0
D

b,Nl ,bP
Gdr0 . ~3.10!
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Therefore, the coexistence lines, which fulfill the con
tion m l

I5m l
I I , can be drawn as

05DVdbP1D~U112r0U2!dr0 , ~3.11!

S dbP

dr0
D

coex

52
D~U112r0U2!

DV
, ~3.12!

where theD symbols express the differences of the cor
sponding property between both phases. The equation fo
simulation using the first-order approach appears by tak
B50, which makesU250.

IV. SIMULATION DETAILS

Different simulation runs were performed in the ensem
described in previous sections. The number of particles
Nl5256 in all cases. A second-order predictor correc
technique was used to perform Clausius-Clapeyron inte
tion. It is probably worthless to use more sophistica
schemes because of the softness of ther0-bP line, which
makes the accuracy in the determination of (dbP/dr0) the
main source of error in the integration. The integrati
scheme was started fromr050. In such a case one has
pure system of large particles, and therefore the initial
motic pressurebPs3.11.71 corresponds to the meltin
pressure of the HS’s@21,22#. According to the previous the
oretical scheme the mixture can be viewed as a pure sys
with particles interacting through an effective potential.
this scenarior0 plays the role of the inverse of the temper
ture, with an effective potential that also depends on suc
temperature.

In the processes of Clausius-Clapeyron integration, ap
-
he
g

e
as
r
a-
d

-

m

a

r-

ently an irreversible transition was found in thecrystal
branch. In order to overcome the problems due to either
irreversibility associated with a first-order transition in th
crystal phase between two fcc lattices at different densiti
or the presence of large fluctuations in the vicinity of a me
stable critical point of the same kind, we performed TI~at
different pressures in both fluid and crystal phases to loc
the coexisting densities for values ofr0 greater than those
where the instabilities were observed!.

V. RESULTS

We have performed simulations to determine approxim
phase diagrams using both first- and second-order ex
sions ofV for R50.10 and 0.05. The phase diagrams of t
systems considered in first- and second-order approache
plotted in Figs. 3–6. The diagram corresponding to
second-order approach forR50.10 shows an isostructura
crystal-crystal equilibrium which terminates at a critic
point ~see Fig. 4!. For the same value ofR in the phase
diagram evaluated with the first-order effective potential,
triple point was found; however, an abrupt change of
crystal density in the phase diagram indicates either that
reference density range where such a crystal-crystal coe
ence occurs is very small, or that such an equilibrium
comes metastable because it is preempted by the fluid cr
equilibrium. For the smallest size ratio (R50.05) the isos-
tructural crystal-crystal transition appears in both orders
approach~Fig. 6!. On the other hand, no fluid-fluid equilibri
have been found for any of the cases analyzed in this w
The general shape of the phase diagrams~Figs. 3 and 5!
seems to indicate that such equilibria, if they exist, beco
metastable with respect to the fluid-crystal transition. R
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cently, Dijkstra, van Roij, and Evans have found@18# such
metastable phase transitions by performing a computer s
lation with an effective potential@10#, using an approach to
the problem similar to the one proposed in this work. T
effective potential used in Ref.@18# is slightly different to the
one developed in this work~see Fig. 2 for a particular real
ization of the effective potentials!. For low values ofr0ss

3

the attractive well of the potentials of Ref.@10# is deeper and
wider than both the one developed in this work and the ex
one. The slight differences in well width are, probably, t
reason why no solid-solid stable equilibrium was observed
Ref. @18# for R50.10.

FIG. 3. Phase diagrams~binodal lines! of a hard sphere mixture
with R50.10 in the (r ls l

3 ,r0ss
3) plane using first-~crosses! and

second-order~squares! approaches to the grand potential of the s
vent. Estimated error bars (2s) are also shown.

FIG. 4. Detail of the phase diagrams of a hard sphere mix
with R50.10. Symbol meanings are as Fig. 3. Lines are just to
the points.
u-

e

ct

n

On the other hand in our diagrams the fluid phase in eq
librium with a solid at low values of the solvent densi
shows larger densities than those in Ref.@18#. These unex-
pected differences might be produced by the interpolat
scheme used in Ref@18# to perform TI. The rest of the dia
gram is quite similar, and the small differences can safely
ascribed to the different effective interactions used.

The similarities between the diagrams obtained us
first- and second-order approaches to the effective potent
and also with those in Ref.@18#, leads us to think that the
particulars of the depletion potential model have a small
fluence on the general features of the diagram, at least in
solvent densiy region studied in this work.

In order to check the quality of the approximations, w

-

e
n

FIG. 5. Phase diagrams of a hard sphere mixture withR50.05
using first- and second-order approaches to the grand potenti
the solvent. See Fig 3 for symbol explanations.

FIG. 6. Details of the phase diagrams forR50.05. Symbols are
as in preceding figures.
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TABLE I. Comparison of the results of simulations with effective potentials with exact results foR
50.10. The subscripts indicate the kind of calculation,O1 andO2 refer to the simulation using first- an
second-order effective potentials, respectively. The procedure to evaluate the ‘‘exact’’ values in indic
the text.

Phase r0ss
3 bPs l

3 (r ls l
3)O1 (r ls l

3)O2 (r ls l
3)exact (rsss

3)O1 (rsss
3)O2 (rsss

3)exact

Fluid 0.32 0.36 0.293~7! 0.258~12! 0.256 0.255~15! 0.270~15! 0.269
Crystal 0.30 24 1.3744~10! 1.3841~6! 1.3870~4! 0.0297~2! 0.0437~2! 0.0429~5!
e
ds
lts
in

lo
w

ve
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th
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e
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e-
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e
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of
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M.
a

can compare some results with ‘‘exact’’ data for two cas
with R50.10 forr0ss

3.0.30. One of the cases correspon
to the fluid branch of the fluid-crystal transition. The resu
from computer simulation are compared with data com
from an empirical equation of state~EOS!, the so-called
Boublik, Mansoori, Carnahan, and Starling~BMCSL! EOS
@23#, which is supposed to be accurate for this case of
packing fractions of both components. On the other hand
have performed a simulation in aNl ,bms ,bp ensemble cor-
responding to the situation ofr0ss

350.30 andbPs l
3524.

The relation betweenr0 and bms and bp0 can also be ex-
tracted from the BMCSL EOS.

In Table I we collect these data, and it can be obser
how the second-order approach compares quite well with
‘‘exact’’ results. This agreement leads us to point out that
second-order approach seems to be accurate enough to
mine the phase diagram, at least up to the values ofr0 used
in this work.

VI. CONCLUSIONS

The results presented in this work seem to show that th
is not a stablefluid-fluid phase equilibria in very asymmetri
.

an
.

ic

A

tte
s

g

w
e

d
e

e
ter-

re

mixtures of hard spheres. Even if the work is centered
situations where the packing fraction of the small compon
is rather low, it is to be expected that the behavior will r
main similar to that shown in these results.

It has also been observed that the shape of the phase
grams evaluated using first- and second-order approach
quite similar in thebP,r0 plane. Moreover the diagrams ar
quite similar to those reported in Ref.@18#, when a similar
approach was used, but with different effective potentia
Finally, the presence of isostructural solid-solid phase eq
libria in these systems seem to indicate the possibility
finding this phenomenology inreal systems formed by col-
loidal mixtures.
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