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Phase equilibria of asymmetric hard sphere mixtures
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The phase diagram of mixtures of hard spheres with additive diameters is studied. The case of very different
sizes is treated by means of mapping the two component system on a one component problem. In this
monocomponent system large particles are explicitly considered, whereas the effects of the small component
are included through an additional effective interaction potential between large particles. The effective poten-
tial is used to analyze the phase diagram of the mixture by means of computer simulation techniques. Results
for the behavior at low density of small spheres seem to indicate that no fluid-fluid equlibria occur. On the
other hand, the results show how this kind of mixture can exhibit equilibria between isostructural crystalline
phases[S1063-651X99)08204-5

PACS numbdrs): 05.20-y, 64.75+g, 82.70.Dd

[. INTRODUCTION Preliminary result§14] seem to indicate such a behavior. In

The phase equilibria of asymmetric hard sphere mixtureshis work we explore a combination of different methods of
(AHSM) has become a problem which has received a lot oftatistical mechanics to determine the phase diagram of these
attention in recent yearfl]. The existence of fluid-fluid Systems. The procedure lies in the possibility of mapping the
equilibria in AHSM has been predicted from theoretical ap-two component system in a one component system with an
proaches; however, the results of different approximate thedffective pair potential which depends on the activity of the
ries are very discrepartl]. Standard computer simulation Solvent. This mapping procedure is based on the theoretical
methods are not very effective when applied to these sydramework of the statistical mechanics of simple fluids in
tems: the interesting results are Supposed to appear at hi@xternal fields. The use of an effective potential of a mono-
packing fractions of both components when the particle size§0mponent system allows us to use a number of simulation
are quite different, this leads us to consider systems with #chniques to explore the phase diagram without needing to
high number of particles of small species in order to have &ise a very large number of particles or very long runs.
sensible number of large particles, furthermore, the systems The paper is sketched as follows. In Sec. Il we show an
suffer from a serious additional problem: the diffusion of accurate route to map the two component system in a one
large particles is quite hindered by the presence of mangomponent problem. Section Ill is devoted to the procedures
small particles which makes equilibration an impossible taskused to determine the phase diagram. In Sec. IV we mention
One of the most popular methods to simulate fluid-fluid equi_the main simulation details. In Sec. V the main results are
libria, the so called Gibbs ensemble Monte Carlo meft&gjd ~ Shown, including the phase diagram and some tests to check
is not useful in this context. In this case the problem is due tdhe ability of the effective potential formalism to reproduce
the difficulties in designing effective methods to insert largethe results of the binary system. Finally, in Sec. VI the main

particles in the system. conclusions are collected.
It is known that in a system composed of a solute of large
particles and a solvent of small particles the difference in II. STATISTICAL MECHANICS

size can induce some attraction between large parfigld

due to excluded volume effects which produce the so called We will deal with binary mixtures of hard spheres. The
depletion forces. These effects are supposed to be shdrard sphergHS) diameters will bers andoy (o> o). The
ranged in the large particle size scale. Some effort has beegize ratio is defined aR=o/o,. Components and! will
devoted to parametrizing the form of these induced interacbe referred to as the solvent and solute, respectively. The aim
tions between solute particlg§—10]. The influence of such of this work is to solve the statistical problem of the mixtures
effects on the phase equilibria of the system is the main poiny considering a fluid of solute particles interacting through
in this work. On the other hand, in recent years some attersome effective potential which will depend on the chemical
tion has been devoted to evaluating the effect of the potentigiotential(or other related propertyof the solvent.

range in the phase diagram of simple fluids. One of the most The partition functionQ in an ensemble defined bg
interesting findings is that, for systems interacting through &= 1/(kgT), 8p, zs, andN,, wherekg is the Boltzmann con-
hard core potential plus a very short ranged attractive interstant, T is the absolute temperaturg,is the pressure, and
action, the liquid does not appear as stable phaseld. I z;xeP#s is the activity of the solventwith ug being the
addition, for very short range potentials, equilibria betweerchemical potential of the solventeads

two crystalline phases with the same symmetry have been
found [13]. Such equilibria end for high temperatures at a
critical point. One question that arises after watching these= N
facts is whether the phase diagram of very asymmetric hard A 'N;!
sphere mixtures could show this kind of phenomenology. (2.9
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whereA, is thede Brogliewavelength of large particles), | volumes excluded to the solvent by particiesd], etc. The
represents the hard sphere interaction between soluteard sphere interaction between solute particles makes the
spheresg, are the position coordinates of solute particlestruncation of the series possible. The number of terms to
reduced with the system sig&5]|, and(} is the grand poten- consider depends on the size ratio. From simple geometric
tial of the small particles for a given large particle configu- considerationg17] it follows that for values ofR<2/\/3
ration. ) can be expanded in a series of the solvent activity— 1=R,=0.1547, the hard sphere interaction between large
considering large spheres as an external figgl. spheres avoid the existence of an intersection of the volumes
excluded by three large spheres. Therefore RetR,,
A. First-order expansion

The expansion of) up to first order produces l,=V— N|v|a3+2 S(og.1ij), (2.9
i<

—BAY=z,(V,a), (2.2

where v,=mr|3/6 is the solute particle volumey=1+R
=(20g)/ oy, andS(o,r) is the overlapping volume between
‘two spheres of radius at distance . Using the definition of
«, such a volume can be written as

wherel , is the volume available for small spherés.is a
function of the position coordinates of the large particles
Positions lying at a distance less thag=(os+ 0))/2 of a
solute particle are not accessible to solvent partidiegan
be written as 3 2
To, r
S(O'g,f)—ﬁ( ) 26{"‘;I

(2.9

a— —
g

l,=V— Ew+2 wij— i<JZ<kwijk+---, (2.3

i<j
for r/oy=<a, and 0 otherwise. The patrtition function of the
wherew; represents the amount of volume excluded to thesystem in the limit of low activities of the small component
solvent by the th particle, andw;; is the overlap between the is

Q(l) fdvale BpVE 2V zNivya J'dQI ex;{E ( BUHS(r|J)+ZSS(O's|,I‘”)) (26)

3N|N |
where ut'S represents the hard sphere pair potential between solute particles, and the @iy the role of additional
effective pair interactions between large spheres due to the presence of small particleseXpransion of) up to first order
does not take into account interactions between small spkéuesto the small reduced densitonsidering a pure system

of small spheres at the same level of approximatfost order in activity, which is at chemical equilibrium with the solvent
in the mixture, it is possible to relate the activity with the dengigyand pressur@, of such a reference system:

BpG=pH =1zs. 2.7

An ad hocosmotic pressurél*) can be defined as

BIIY=pBp—1z,. (2.9

Introducing this definition in Eq(2.6), we obtain

eX[{—ZSN|v|a3]

Q(l):
AN

fdv \/Nle‘ﬁ“(l)"f dq exr{% (= BUPS(ri)) + 2e8( g1, 1)) |- (2.9

B. Second order

The second-order expansion of the grand potenifd(?), in terms of the activity reads
- BO?=—paW+ 22, (2.10

wherel, [16] is

|2(V'Q|)=%f dry eXF[_,BULs(rﬂVaCh)]f drpexd —BU s(ro|V,q)]1f(r), (2.1
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where the integration is performed over two solvent par-where

ticles. f is the Mayer function of the interaction between

solvent particles, antd| g takes into account the hard sphere

interaction between large particles with a small one. This 'Buélz‘f)ec:; [Bui*=2S(01.1ij) + 28BS(014 1) .
contribution can also raise an additional pair-additive effec- (2.1

tive interaction between large spheres for small valueR of

(R<R{?~0.095)[17]. This is not the case f&R=0.10, one  The corresponding expressions for the expansion up to first
of values used in this work. A number of routes can be takemrder are recovered by settifi=0.

at this point in order to avoid the cumbersome task of intro- A new transformation is convenient in order to achieve
ducing many-body contributions, One can neglect the manybetter convergence behavior. That transformation consists of
body contributions, which are only relevant when three pardeveloping the effective potential using the density of the
ticles become very close, and evaluate the second-ordeeference systerp, instead of its activity. This is done by
contribution to the effective potential between pairs of par-writing the activity as a series of the homogenous system
ticles [16], or consider the results in the limit &—0 [5].  density, substituting in Eq2.15, and retaining terms up to
Then one can find some difficulties in the results, either besecond order ip,. The result is

cause one has to parametrize numerical results for some clus-

ter integrals in the evaluation of the pair contributiond o z=p+2Bp%+- - -, (2.1
or due to the complexity of some analytical res@iswhich

make them not very amenable to carrying out simulations. exd —N 3( 5 +Bo2)+ Nivi02B(ad— ol
We have chosen to follow a different point of view, which Q2= 1= Nwia(po 3PN°) wipgBlag—a’)]
makes simulation easier while keeping the relevant features 0 ATN!

of the systeml, can be regarded as the configuration inte-

gral of a diatomic molecule with a bond distance that is free Xf dv VNle—gn<2>vf dqze—ﬂug_,%f)ec' (2.18
to change between 0 ang, in a medium of large spheres.

This configuration integral can be written as the product of

an ideal internal part by a translational part which incorpo-Where

rates the interaction with the external field. This second con- 5 )

tribution can be approximated by considering equivalent BI1? = Bp—(po+Bpg), (2.19
sphere with an effective diametey,. In this work the value

of o4 has been chosen to obtain the correct valuk af the BUR) — 2 BuZ) (1)

limit of high dilution of large spheres. With this criteria, the sffec &= effed T

second-order contribution to the partition function can also

be written in terms of pair interactions for the valle

=0.10, :;j [IBUHS(rij)_Poyl(rij)_BP(2)V2(rij)]v
3 (2.20
IZZ_B V—N|v|ad+2 S((T|d,rij) y (212
1<l where
whereB=2mo3/3 is the second virial coefficient of a pure _
solvent systemgy=(o,+ 04)/2, ag=204/0y and oy can () =Sos.r) (2.29
be calculated as
Vz(r):28(0'5|,r)_8(0'|d,r). (222
s 3 9R R® , . , ,
oy=or| 1+ — 5| (2.13 Aggln, the expression for the first-order approach in terms of
8(1+R)  4(1+R) po is recovered by taking=0.

. o In Fig. 1 we compare the firsf-v,(r)] and second-order
_ Following the same procedure as in first order, the expant,,,(r)], contributions to the effective pair potential between
sion of the pressure of the reference system up to secongrge spheres used in this work with those reported in Ref.
order reads [5], and the exact ones evaluated by diagrammatic expan-
2)_ sions up to second order of the pair distribution funcf{ibé]
Bpy’ =2—BZ. (214 of two large particles in a medium of small particles.

In Fig. 2 we show the realizations of the effective contri-
butions into the total pair interactiogu{f,., for R=0.10
andpoa§=0.30. In addition we plot the effective interaction
using the third-order exact potential for this case, evaluated
3 20 3 numerically by means of a diagrammatic expansion, and the
_exd—Nivi(zsa™— zBay) ] qv Wig— A2V result for the potential developed in R¢L0], which also

Ai’N'Nll contains terms depending quﬁ This last effective interac-
tion was used in Ref18] in their study of the phase diagram
of AHSM using a similar approach to that employed in this
work.

Therefore, introducing thead hoc osmotic pressure
BII®=gp—Bp{?), we obtain the second order approach to
the partition function:

Q(Z)

X f dqze—ﬁué?ec (2.15
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FIG. 2. Scaled effective potential8Ruq{r) between large
particles forp002:0.30 and size ratidr=0.10. In the figure for
such conditions we plaRBUZ. .= — R[ pov1(r)+Bp3v,(r)] (con-
tinuous ling, and RBU,=—Rpor.(r) (pointed ling, and the
crosses represent the exact evaluatigmto third ordey of the two
body effective interaction which, at the current density, is expected
to represent the total interaction quite well. The dashed line corre-
%tpond to an effective potentigbroposed in Ref[10]), which was
used in Ref[18] in their study of the phase diagram of AHSM.

FIG. 1. Contributions to the effective potential between large
particles forR=0.10. The distances are given in termshofh
=(r—oy)/os. The effective contributions are multiplied by the
size ratioR. Such scaling produces similar curves for different val-
ues ofR. Upper curves represent the term& sz(r)/ag. Below,
the terms— va(r)/ag are plotted. Continuous lines show the ef-
fective contributions used in this work. Crosses represent the exa
results for the two body interaction. The results from REl. are
given by dashed lines.

state and subsequent ones one can perfdin &I1, pg)
IIl. PHASE EQUILIBRIA simulations for both phases, and use the results to move
It is now well established that the range of pair interaction"’llong a 0o, A1) trajectory that guarantees that chemical
plays a major role in the existence (dtable liquid-vapor potentle}l of large partlples IS .kept equal in bOt.h phases.
phase equilibria. Thus it seems unlikely to find phase equi- Starting from the differential form of the Gibbs free en-

libria involving two phases with disorder with respect to ?hrgytg’nvs\’% rsr!r(;tticcr)]ntsh(ianttrr]g(r:irggg?r?nggi el?ugﬂzust'rg\:;% er(rjni:-
large particles in the type of mixtures we are dealing with. s

Recent work has shown that short range interactions can pr jons aIIovx{ us to express, at the end., the problem in terms of

duce the coexistence of ordered phases with the same sy e .osmotlc pressure and the density of a pure solvent sys-

metry[13]. In order to analyze these effects in our systems,

we have studied by computer simulation the phase diagram

in situations of low activity of the small component. Ther- d(BG)=VdBp+ B dN+ BusdNs, 3.9

modynamic integration(Tl) and the so-called Clausius-

Clapeyron (or Gibbs-Duhem integration scheme§l19,20  wherepu, is the chemical potential of the solute. By a Leg-

have been used to evaluate the phase diagrams at the twadre transformation, and recalling the equaliy

levels of approach described in Sec. II. =2;N;u;, we introduce the chemical potential of the solvent
In order to perform Clausius-Clapeyron integration, oneas a relevant variable:

starts from certain conditions where phase equilibrium exists

em:

and is well characterized, and proceeds to change the rel- d(BuN)) =d(BG— BNy

evant thermodynamic variables in such a way that thermal, 5s

mechanical, and chemical equilibria between the phases are =Vd(Bp)+ BudN,—Nd(Bus). (3.2
kept along the trajectory. Those ideas apply in our case as

follows. In an ensemble defined by the variabjed, N, A pair of transformations allows us to use the reference

and po, we consider two phases in equilibriufwe neglect  solvent density, and the osmotic pressugl as relevant
the trivial contribution of the temperature for hard core mix-yariables instead 0Bus and Bp:

tureg. We have to establish a starting point on ti1, pg)

plane in such a way that we have equal chemical potential of N

the solute in both phases. The rest of equilibrium conditions d(BuN)=Vd(Bp)+ BmdN,— —dz, (3.3
are readily fulfilled in our working ensemble. For such a Zs
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Ns 9z AL BN 1]
d(BuN) =Vd(Bp)+ BudN;— —= ——dpo, ———|  =Nw[a’+2peB(2a°~a})]
ZS (9P0 apo N BH
(3.9 b
+U1+2p0U2, (37)
d(BmN)=Vd(BI) + B dN,
here
ﬂ[ﬁpo]) Ns( (925> w
+|V ——|=——||dpy. (3.
( dpo z\ apo/ | PO 39 Ny
The term between brackets can be evaluated using the Ul:_;j valriy), 38
partition functions developed above to produ@e the
second-order approach N,
U,=—B rij)- 3.9
(&[ﬂth] v a[ﬁpo])_N_s(%) 2 .2<, va(ri;) (3.9
9po N pn dpg Zs\ dpg _ _ o _
r In the following we will use superindicdsandl! to dis-
alnQ®@ tinguish between thermodynamical properties of two differ-
2—( P , (3.60  ent phases. In a differential change mf and SI1 we will
Po- I .pm obtain:

0[BN|MH) _(ﬂ[ﬁNlm”]
BN, BI1

dBN (i — ") =(V'=V"d(BI1) + dpo. (3.10

dpo

dpo )B,Nl Bl

Therefore, the coexistence lines, which fulfill the condi-ently an irreversible transition was found in troeystal

tion u/=u|', can be drawn as branch. In order to overcome the problems due to either the
irreversibility associated with a first-order transition in the
0=AVdBIT+A(U;+2peU5)dpg, (3.11 crystal phase between two fcc lattices at different densities,
or the presence of large fluctuations in the vicinity of a meta-
dgIl A(U;1+2poU») stable critical point of the same kind, we performed (&t
( dpo )Coex: T AV (3.12 different pressures in both fluid and crystal phases to locate

the coexisting densities for values p§ greater than those

where theA symbols express the differences of the corre-WNere the instabilities were obseryed

sponding property between both phases. The equation for the
simulatior_1 using the first-order approach appears by taking V. RESULTS
B=0, which makedJ,=0.

We have performed simulations to determine approximate
phase diagrams using both first- and second-order expan-
sions of() for R=0.10 and 0.05. The phase diagrams of the

Different simulation runs were performed in the ensemblesystems considered in first- and second-order approaches are
described in previous sections. The number of particles waplotted in Figs. 3—6. The diagram corresponding to the
N;=256 in all cases. A second-order predictor correctorsecond-order approach fét=0.10 shows an isostructural
technique was used to perform Clausius-Clapeyron integreerystal-crystal equilibrium which terminates at a critical
tion. It is probably worthless to use more sophisticatedpoint (see Fig. 4 For the same value dR in the phase
schemes because of the softness of ghe3I1 line, which  diagram evaluated with the first-order effective potential, no
makes the accuracy in the determination d@B{1/dp,) the triple point was found; however, an abrupt change of the
main source of error in the integration. The integrationcrystal density in the phase diagram indicates either that the
scheme was started fropy=0. In such a case one has a reference density range where such a crystal-crystal coexist-
pure system of large particles, and therefore the initial osence occurs is very small, or that such an equilibrium be-
motic pressureBllo®=11.71 corresponds to the melting comes metastable because it is preempted by the fluid crystal
pressure of the HS'R21,22. According to the previous the- equilibrium. For the smallest size rati®R¢E 0.05) the isos-
oretical scheme the mixture can be viewed as a pure systetructural crystal-crystal transition appears in both orders of
with particles interacting through an effective potential. Inapproach(Fig. 6). On the other hand, no fluid-fluid equilibria
this scenarig, plays the role of the inverse of the tempera- have been found for any of the cases analyzed in this work.
ture, with an effective potential that also depends on such @he general shape of the phase diagrafigs. 3 and b
temperature. seems to indicate that such equilibria, if they exist, become

In the processes of Clausius-Clapeyron integration, appametastable with respect to the fluid-crystal transition. Re-

IV. SIMULATION DETAILS
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FIG. 3. Phase diagrantbinodal lineg of a hard sphere mixture
with R=0.10 in the p,o?,poo?) plane using first{crossep and

cently, Dijkstra, van Roij, and Evans have foufiB] such

effective potential used in Rgf18] is slightly different to the

ization of the effective potentiglsFor low values ofpgog
the attractive well of the potentials of R¢10] is deeper and

Reference reduced density of solvent

Ref.[18] for R=0.10.
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FIG. 5. Phase diagrams of a hard sphere mixture Rith0.05
using first- and second-order approaches to the grand potential of
second-ordetsquaresapproaches to the grand potential of the sol- the solvent. See Fig 3 for symbol explanations.
vent. Estimated error bars ¢2 are also shown.

On the other hand in our diagrams the fluid phase in equi-

ok ' . librium with a solid at low values of the solvent density
metastable phase transitions by performing a computer simpows larger densities than those in RdB]. These unex-

lation with an effective potentigl10], using an approach to nected differences might be produced by the interpolation
the problem similar to the one proposed in this work. Thégcheme used in Ré1.8] to perform TI. The rest of the dia-

al us! : ; gram is quite similar, and the small differences can safely be
one developed in this wortsee Fig. 2 for a particular real- 55cribed to the different effective interactions used.

The similarities between the diagrams obtained using

_ TRE first- and second-order approaches to the effective potentials,
wider than both the one developed in this work and the exacing also with those in Ref18], leads us to think that the

one. The slight differences in well width are, probably, theparticulars of the depletion potential model have a small in-
reason why no solid-solid stable equilibrium was observed ifjyence on the general features of the diagram, at least in the
solvent densiy region studied in this work.

In order to check the quality of the approximations, we

140 |

130 |

120 |
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0.04

FIG. 4. Detail of the phase diagrams of a hard sphere mixture

with R=0.10. Symbol meanings are as Fig. 3. Lines are just to join

the points.
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Reduced reference density of solvent
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FIG. 6. Details of the phase diagrams = 0.05. Symbols are

as in preceding figures.
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TABLE |I. Comparison of the results of simulations with effective potentials with exact resultR for
=0.10. The subscripts indicate the kind of calculatior, andO2 refer to the simulation using first- and
second-order effective potentials, respectively. The procedure to evaluate the “exact” values in indicated in
the text.

3 3 3 3 3 3 3 3
Phase poos  PBlla (P1o7) 01 (Pio7)o2 (P10 exact (PsOo1  (PsTS)oz  (PsTS)exact

Fluid 0.32 0.36 0.299) 0.25812) 0.256 0.25815 0.27Q15) 0.269
Crystal 0.30 24 1.37440) 1.38416) 1.387@4) 0.02972) 0.04372) 0.04295)

can compare some results with “exact” data for two caseanixtures of hard spheres. Even if the work is centered on
with R=0.10 for poo2=0.30. One of the cases correspondssituations where the packing fraction of the small component
to the fluid branch of the fluid-crystal transition. The resultsis rather low, it is to be expected that the behavior will re-
from computer simulation are compared with data comingmain similar to that shown in these results.

from an empirical equation of stat€eOS, the so-called It has also been observed that the shape of the phase dia-
Boublik, Mansoori, Carnahan, and StarlilBMCSL) EOS  grams evaluated using first- and second-order approaches is
[23], which is supposed to be accurate for this case of lowyuite similar in theBIl, p, plane. Moreover the diagrams are
packing fractions of both components. On the other hand W@uite similar to those reported in RdfL8], when a similar
have performed a simulation inNy , Bus, Bp ensemble cor-  approach was used, but with different effective potentials.
responding to the situation ¢foc3=0.30 andplloi=24.  Finally, the presence of isostructural solid-solid phase equi-
The relation betweep, and Bus and Bpo can also be ex- jipria in these systems seem to indicate the possibility of

tracted from the BMCSL EOS. , finding this phenomenology ireal systems formed by col-
In Table | we collect these data, and it can be observe idal mixtures.

how the second-order approach compares quite well with the
“exact” results. This agreement leads us to point out that the
second-order approach seems to be accurate enough to deter-
mine the phase diagram, at least up to the valugs,afsed

in this work.
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